Friday, January 19, 2018

How To extend your life? Look into two proteins, The Klotho proteins and Hormone FGFs.

Anti-aging proteins may treat diabetes, obesity, and cancer

A family of longevity proteins has been examined in detail for the first time. The new insight may help create innovative treatments for a range of diseases, including some cancers, obesity, and diabetes. A molecule involved in aging gives up its secrets in a new study.
From article, (A family of molecules called Klotho proteins has intrigued researchers interested in the aging process for decades.
They are "named after the Greek goddess who spun the thread of life." Involved in metabolism, they also appear to play a role in longevity.
Studies in the late 1990s showed that mice with mutated Klotho genes suffer from a condition similar to premature aging: they had much shorter lifespans, became infertile, and even developed arteriosclerosis, osteoporosis, and emphysema, as well as skin atrophy.
A later study also found that the overexpression of Klotho genes extended the lifespan of mice by altering insulin and insulin-like growth factor 1 signaling.
If the activity of this hormone could be stimulated pharmacologically, it might be useful in treating conditions such as diabetes and obesity. In the paper, the team also describes a variant of FGF21 that is 10 times more potent, potentially offering an even greater therapeutic advantage.
Klotho proteins and FGFs operate in close quarters. In fact, those interested in longevity have, for some time, debated whether Klotho proteins or FGFs are the molecules responsible for altering aging.
Using X-ray crystallography, the team built up a detailed picture of beta-Klotho's structure. The results are published this week in the journal Nature.
Their first discovery was that beta-Klotho is the primary receptor for FGF21, a hormone that is produced during starvation. FGF21 has a range of effects — for instance, it increases insulin sensitivity and enhances glucose metabolism to induce weight loss.
Additionally, they found evidence of how glycosidase — a similarly structured enzyme that breaks down sugars — evolved into a hormone receptor "that lowers blood sugar." As Schlessinger adds, this "may not be a coincidence."
There is a huge need for more effective treatments for obesity and diabetes, so anything that can offer a novel route is likely to gain a great deal of attention.
Enhancing this pathway could be of benefit. On the other side of the coin, the authors believe that blocking the pathway might lead to better treatments for liver cancer and bone diseases.
Schlessinger concludes by summarizing the long road ahead: "The next step will be to make better hormones, make new potent blockers, do animal studies, and move forward." More studies are already in the pipeline.)





No comments:

Post a Comment