Our climate is changing rapidly. It's time to talk about geoengineering.
Planet Earth is humankind's biggest experiment. From the moment we figured out how to use fire and altered the land through farming, humanity turned the planet into an immense, long-term experiment of what happens when we tinker with the types and quantities of gases in the atmosphere.
From article, (Nearly thirty years ago, at a lecture at the Woods Hole Oceanographic Institution in Massachusetts, an oceanographer named John Martin stood up and famously announced: “Give me half a tanker of iron, and I will give you an ice age.”Martin’s bold pronouncement kicked off a decade of research into one of the first geoengineering schemes that scientists considered potentially viable.
Called iron fertilization, Martin’s idea is fairly simple in principle. All it requires is dumping a layer of iron, likely in the form of greenish crystals of iron sulfate, on a broad swath of the ocean surface. The iron stimulates the growth of phytoplankton, minuscule marine plants that absorb carbon dioxide and release oxygen. In theory, if done on a massive scale, iron fertilization would remove a large portion of anthropogenic carbon dioxide from the atmosphere, proponents say.
Marine scientists have emphasized that, while large phytoplankton blooms do take up carbon dioxide while they’re alive, when they die, their tiny decomposing bodies attract bacteria. Dying phytoplankton gathered en masse can cause the digesting bacteria to use up all of the oxygen in the surrounding waters, creating a “dead zone” that can kill or sicken anything that swims into it.
These days, researchers are leaning more towards geoengineering techniques that mimic Earth’s natural processes. The leading method among geoengineering proponents is stratospheric aerosol injection, a process in which reflective particles are released into the upper atmosphere. If this method were to work as intended, the particles would reflect incoming light, reducing the overall greenhouse effect of the atmosphere. This method essentially mimics the output of volcanic eruptions, which have demonstrated a cooling effect on the planet in the past.
There are risks here, too, though. A recent modeling study in the journal Nature showed that stratospheric aerosol injections in the Northern hemisphere would slightly cool the region and could even decrease North Atlantic hurricanes. But it would also cause devastating droughts in sub-Saharan Africa. The opposite — releasing these particles in the atmosphere above the Southern hemisphere — would increase rainfall in sub-Saharan Africa but increase the number of tropical cyclones hitting the eastern United States. In both cases, this would occur because the regional jet stream would get stronger and shift towards its respective pole.
The only way to avoid this would be constant or regular injections — at the least, every six months, Haywood estimates — at high altitudes around the equator in order to make sure the particles would distribute evenly. This would require a near-global agreement by world governments, a consensus of everyone on the planet to alter the place we’ve always lived.
This is the real problem, according to those who oppose geoengineering: We would rather find a “quick fix” than do the hard work of cutting our dependence on fossil fuels. Yet those fixes don’t exactly work the way we think they do. We’re thinking about our planet the way some people think about losing weight; we would rather take diet pills and continue eating terribly, but in the end, we’ll end up working much harder than if we had just stuck with diet and exercise.)
For More Info
Me, "What isn't emphasised enough is that we need to take action now, to prevent global warming effects later. While these global cooling or reducing effects are considered extreme, So, will be our future weather. Sometimes, a diet pill is better for a patient who can not loose the weight normally but would gain from the affect."