From article, (Renewable energy, especially solar and wind power, is quickly becoming the dominant locus of new electricity generation investment.Battery technology will define the future of renewable energy
It is an exciting time to be involved in energy innovation. There have been developments on multiple fronts at the consumer level with the introduction of new models of electric and hybrid-electric vehicles, and perhaps more importantly, at the utility level with massive commercial investments in renewable energy generation and storage technologies
The Bloomberg 2017 New Energy Outlook predicts that $10.2 trillion will be spent on new power generation worldwide through 2040, and a massive 72 percent of this will be invested in new wind and solar plants. The broader availability of clean power is an encouraging development from both an environmental and an economic perspective. However, as energy markets accelerate along the transition from conventional to sustainable energy generation, there will be a growing problem that the industry must address.
The challenge is that a growing reliance on wind and solar energy can cause electrical grids to become unstable. Everyone can understand that the output of solar and wind farms naturally fluctuates due to cloud cover and wind speeds. As these intermittent sources of power grow in importance, so does the potential for damaging jolts to local and regional grids. Risks range from localized voltage drops that wreak havoc on modern electronic devices to blackouts of the kind that, in 2016, plunged almost all of South Australia into darkness for nearly 48 hours in some areas, an event that was followed by months of widespread power instability.
The traditional solution to this problem has been the maintenance of “spinning reserves” — a back-up network of fossil-fuel generators primarily designed to meet demand peaks. Ultimately, the more efficient solution lies in energy storage, particularly advanced battery technology. Batteries are the optimal means of balancing renewables-dominant grids because they can inject power into grids rapidly and in the precise amounts needed to interdict and smooth out fluctuations.
The main obstacles to the broad deployment of energy storage, of course, have been the high cost of the batteries themselves and the difficulties in obtaining enough of them to handle the needs within a utility grid. That is changing rapidly. Investments in technologies, supply chains and production facilities for Lithium Ion (Li-ion) batteries in particular have brought them to the point where a scalable solution exists.
Battery storage is also becoming a go-to solution at grid scale. After an overambitious ramp-up of wind and solar power precipitated a grid collapse, South Australia’s government sought a balanced solution comprised of both additional spinning reserves and utility-scale batteries. Tesla has installed the world’s largest Li-ion battery farm there. Other companies and utilities have also begun to deploy Li-ion batteries to stabilize grids in the U.S., Europe and Asia.)