Thursday, February 1, 2018

What if you came up with a method, purely by accident, but, that could Capturing CO2 at 85% less cost than what is normally possible? Ethan Novek is making this possible.

The teenager inventor who could change the way the world fights climate change

Greenwich, Connecticut Ethan Novek speaks fast and insists on giving you every detail, even in response to simple questions. It can be overwhelming. But it's worth sticking with him. Novek started winning science fairs in middle school and was awarded his first patent at 16. Now, at 18, he has his own company, Innovator Energy,...

From article, (If everything were to work as planned, Novek’s technology could capture carbon dioxide at $10 or so per metric ton, about 85% less than industry standard.

“I’ve always been fascinated by energy,” says Novek. “There’s so much of it around us, and my early inventions were attempts to find new ways to capture them.” (He calls them inventions, but most only exist as novel ideas.)

Novek wanted to see what would happen if he mixed ethanol with ammonium bicarbonate, a salt whose components are ammonia and carbon dioxide. He thought maybe it could break ammonia and carbon dioxide apart and then recombine them, hopefully to produce urea. When he started the experiment, nothing happened. So he heated the mixture to agitate the molecules even more. He was surprised to see a gas bubbling. That didn’t make sense: urea is not a gas.

When he tested the gas, Novek realized it was almost entirely CO2. That’s when it struck him: He could use a version of the system to separate out the CO2 that results from burning fossil fuels, and capture it—at a lower cost lower than what the industry can achieve today. The most energy-intensive step in carbon capture is using heat to break the bond between an amine and carbon dioxide. Novek, in his experiment, had just broken the bond between ammonia and carbon dioxide, without very much energy.

Here’s how Novek imagined a future carbon capture system would work: First, exhaust gases containing carbon dioxide are piped into a mixture of ammonia and water. Ammonia reacts with the CO2 to form a salt, and the remaining inert gases (such as oxygen and nitrogen) escape. Second, a solvent is added to the mixture, and breaks down the salt back into ammonia and CO2. The resulting pure stream of carbon dioxide is captured and piped underground. Third, the solvent-and-ammonia mixture is separated through distillation, and each component then recycled through the process.)

For More Info



No comments:

Post a Comment