Monday, March 12, 2018

The Ghostbusters May have Been on to Something with a Proton Pack, Except Here, We are Talking about a Proton Battery.

<

All power to the proton: Researchers make battery breakthrough: Working prototype could eventually replace lithum ion batteries

Researchers from RMIT University in Melbourne, Australia have demonstrated for the first time a working rechargeable "proton battery" that could re-wire how we power our homes, vehicles and devices. The rechargeable battery is environmentally friendly, and has the potential, with further development, to store more energy than currently-available lithium ion batteries.

From article, (Researchers from RMIT University in Melbourne, Australia have demonstrated for the first time a working rechargeable "proton battery" that could re-wire how we power our homes, vehicles and devices.
The rechargeable battery is environmentally friendly, and has the potential, with further development, to store more energy than currently-available lithium ion batteries.
Potential applications for the proton battery include household storage of electricity from solar photovoltaic panels, as done currently by the Tesla 'Power wall' using lithium ion batteries.
With some modifications and scaling up, proton battery technology may also be used for medium-scale storage on electricity grids -- -- like the giant lithium battery in South Australia -- as well as powering electric vehicles.
It's the carbon electrode plus protons from water that give the proton battery it's environmental, energy and potential economic edge, says lead researcher Professor John Andrews.
"Our latest advance is a crucial step towards cheap, sustainable proton batteries that can help meet our future energy needs without further damaging our already fragile environment," Andrews said.
"As the world moves towards inherently-variable renewable energy to reduce greenhouse emissions and tackle climate change, requirements for electrical energy storage will be gargantuan.
"The proton battery is one among many potential contributors towards meeting this enormous demand for energy storage. Powering batteries with protons has the potential to be more economical than using lithium ions, which are made from scare resources.)

For More Info



What's a proton battery? Three things you need to know.

Most of your everyday electronics run off of lithium batteries - you know, the ones that you can never seem to find in your drawer when the remote is dead? Yet the days of the double-A may be ending. Researchers at RMIT University in Melbourne, Australia have created a prototype of an alternative battery that runs on carbon and water.

 From article, (The planet’s supply of lithium is concentrated in just a few countries, and the other rare earth metals that go into lithium batteries are an increasingly scarce, expensive resource. In contrast, the proton battery has an electrode made of carbon, one of the most abundant materials on our planet, and is charged by splitting water molecules.

“The advantage is we’re going to be storing protons in a carbon-based material, which is abundant, and we are getting protons from water which is readily available,” said the project’s lead researcher, John Andrews, to The Guardian.


The RMIT battery can be plugged into a charging port just like any other rechargeable battery. What happens next is remarkably simple: the electricity from the power supply splits water molecules, generating protons, which bond with carbon in the battery’s electrode. The protons are then released again to pass through the fuel cell, where they interact with air to form water and generate power.


According to an RMIT press release, experiments showed that the tiny battery — with an active surface area of only 5.5 square centimeters (0.85 square inches) could store as much energy per unit as commercially available lithium-ion batteries.


Mining traditional batteries’ lithium and other rare earth metals can have a host of environmental consequences, including dumping chemicals into ecosystems and clearing land of vegetation. In addition to the carbon footprint of mining, processing the conductive materials requires significant energy, which still most often means electricity that comes from fossil fuels.


Meanwhile, producing the carbon and water needed for this new battery have pretty much zero environmental impact; currently, the main emissions footprint of the battery would be the source of the electricity used to charge it.)


For More Info










No comments:

Post a Comment